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                                                               Abstract 
 
The relative value of irrigation water was assessed for three important crops (corn, 
cotton, and peanuts) grown in the southeastern United States.  A decision tool was 
developed with the objective of allocating limited available water among competing 
crops in a manner that would maximize the economic returns to the producers.  The 
methodology was developed and tested for a hypothetical farm located in Henry County, 
Alabama in the Chattahoochee river basin.  Crop yield – soil moisture response functions 
were developed using Monte Carlo simulated data for cotton, corn, and peanuts.  A 
hydrologic model was employed to simulate runoff over the period of observed rainfall in 
the county to provide inflows to storage facilities that could be used as constraints for the 
optimal allocation of the available water in the face of the uncertainty of future rainfall 
and runoff.    Irrigation decisions were made on a weekly basis during the critical water 
deficit period in the region.   An economic optimization model was employed with the 
crop responses, and soil moisture functions to determine the optimum amount of water to 
place on each crop subject to the amount of irrigation water availability and climatic 
uncertainty.  The results indicated even small amounts of irrigation could significantly 
benefit farmers in the region if applied judiciously.  A weekly irrigation sequence was 
developed that maintained the available water on the crops that exhibited the most 
significant combination of water sensitivity and cash value.   
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1. Introduction 

Agriculture is an important sector of the economy of the southeastern United States 

and produces many high-value crops.  For example, the Southeast region currently 

accounts for over half of the US timber harvest and a quarter of US crop value.   In 1997, 

agriculture accounted for over $33 billion in revenue for eight states in this region 
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(USDA, 1997).   However, agricultural production in the southeast is highly vulnerable to 

natural climate variability in terms of both rainfall and temperature extremes (Burket et 

al. 2001).   For example, unexpected Florida freezes in both 1983 and 1985 resulted in 

crop damages in excess of $1 billion, and the summer drought in 1998 is estimated to 

have caused from $6-$9 billion in damages in the region (Burket et al., 2001). In fact, 

agriculture is considered one of the most weather dependent of all human activities 

(Oram 1989).   The vulnerability of agriculture to weather and climate variability is 

expected to increase as population increases and marginal lands are brought into 

production (Glantz 1994), and as other sectors (urban, industry, and recreation) grow and 

compete for land, water, and other natural resources.  This situation, combined with the 

fact that the average size of farms in the southeast is much smaller than other places, 

makes farming in the region a financially hazardous occupation for the individual farmer. 

Although the Southeast receives a significant amount of precipitation and has an 

extensive system of water supply projects, water demand is beginning to exceed the 

available supply because of increases in population, urbanization, agricultural uses, and 

maintenance of stream quality.   Currently, irrigation is not the major consumer of water 

in the region due to sufficient amount of rainfall in the region.  However, water use for 

irrigation has increased by 36% over the past decade and is projected to continue to 

increase throughout the coming decades (SERAT, 2002).  Furthermore, previous studies 

(Mendolsohn et al., 1994; Adams et al. 1995; Darwin et al. 1995) indicate that climate 

change may also increase the quantity of irrigated land in much of the South exacerbating 

the water demand situation even further.   



Weather and climate information is a vital factor in the decision making process 

of agricultural producers.  Weather data play a critical role in decisions regarding new 

investments and modifications to existing systems, or regarding the day- to- day 

operation of existing facilities, particularly with respect to irrigation allocations.  Thus, 

increasing the quality and usability of the available climate information and decision 

tools could have large economic and social benefits for the region.  The objective of this 

study was to develop a methodology to aid managers in the design of irrigation facilities 

and determination of acres to devote to specific crops by including the uncertainty in 

weather and climate of the affected region.  A decision tool was developed based on the 

objective of allocating limited available water among competing crops during the critical 

production period in a manner that would maximize the economic returns to the producer.     

The methodology can be employed to determine the optimal detention pond-to-drainage 

basin ratio and detention pond-to-irrigated acres ratio for the most efficient and profitable 

operation of the farm.  

The method is based on analysis of the historic variability of climate (rainfall, 

temperatures) and streamflow for an area of interest.  It relies on the availability of 

climate records of sufficient length such that a reliable picture of the variability of 

temperatures and rainfall of the area can be obtained.  Normally, assuming exponential 

type I distributions (i.e., gamma, normal, lognormal, etc), this would require a record in 

excess of 50 years in length.  The historic data were utilized in the simulation of runoff, 

soil moisture, and crop growth for the area.  A hydrologic model was employed to 

simulate runoff over the historic period to provide inflows to storage facilities that were 

then used as constraints for the optimal allocation of the available water in the face of the 



uncertainty of future rainfall and runoff.  Simulated irrigation decisions were made on a 

weekly basis and a crop simulation model was employed to derive crop response 

relationships for each week of the irrigation season.  Based on the resulting crop response 

relationships, weekly irrigation requirements were determined to maximize total returns 

for an exhaustive suite of scenarios by varying storage pond sizes and acres planted, and 

initial soil moisture conditions.   

2. Methodology 

The procedure will be demonstrated for a typical farm located in the Chattahoochee 

River basin in Henry County, Alabama.  The relevant agricultural data for this county 

from the 2000 census is given in Table 1.   

For this demonstration, scenarios were developed assuming that the crops grown are 

corn, cotton, and peanuts.  The goal is to develop a procedure based upon historic 

hydrologic and climate information for use by the farm manager to determine irrigation 

requirements, or optimal acreage of each crop, in order to maximize the returns from all 

three crops.  In order to develop this tool, a large amount of data had to be generated to 

develop the hydrologic and climatological potential of the area as well as the crop 

response to various amounts of water applied during successive weeks of the growing 

season.  In the development of this database, computer models of hydrology and crop 

growth were employed based on 62 years of observed climate data for Henry County.  

Once the database had been developed, then an optimization algorithm was employed to 

determine the optimal water allocations for each crop for each week, subject to the 

constraints of water availability; that would maximize the economic returns to the farmer.  



This procedure can be repeated for as many ratios of pond size- to- catchment area or 

pond size- to- irrigated acres as desired. 

2.1 Hydrologic Modeling 

The US Agricultural Research Service model SWAT (Soil Water Assessment Tool; 

Arnold and Allen, 1993) was employed for the hydrologic simulations.  SWAT is a basin 

scale continuous time hydrologic and water quality simulation model based on 

modifications of earlier ARS models such as GLEAMS, ROTO and SWWRB.  The 

model runs on a daily time step; employs combination type evapotranspiration methods 

(e.g. Penman-Monteith), and a multi-layer vertical soil moisture routing.  Surface runoff 

is computed by the NRCS curve number (CN) method.  An improvement claimed in 

SWAT that is not available in the earlier models is the ability to simulate lateral soil 

moisture movement as a function of basin slope, subsurface flow lengths, and porosity 

(bulk density).  SWAT methodology and practical applications have been thoroughly 

described by Arnold and Allen (1993), Srinivasan and Arnold (1994), Arnold, et al. 

(1998), Srinivasan, et al. (1998) and Rosenthal, et al. (1995).  Present authors have 

employed the model in numerous studies throughout the southeastern U.S. (e.g., 

Ritschard, et al., 1999; Limaye, et al., 2001).  

Required data inputs include daily precipitation and temperature, monthly solar 

radiation, soils data, land cover information (CN, Leaf Area Index (LAI)), and basin 

characteristics such as mean slope, stream length and subsurface flow length.  

Precipitation and temperature data were obtained from a NWS observation station located 

in the county at Blakely, AL and solar radiation data were available from the Agricultural 

Research Station at Griffin, GA.  Topographic data were derived from 30 m resolution 



digital elevation model (DEM) datasets available from the USGS Eros Data Center.  

These data were used to determine slopes and flow lengths.  Soil textures and 

characteristics were obtained from the NRCS State Geographic Soils (STATSGO) 

database.  LAI for the simulated crop coverage were available from help files associated 

with the SWAT program and NRCS curve numbers were obtained from McCuen (1989). 

The majority of Henry County is contained within the Abbie Creek tributary to the 

Chattahoochee River (Figure 1).  A USGS gaging station was located on this stream at 

Haleburg, AL and was in operation from 1958 –1993.  The gage was located near the 

downstream confluence of Abbie Creek with the Chattahoochee and encompassed an 

area of 375 km2.  The SWAT model was used to simulate the streamflow for this basin in 

order to provide runoff that would be available for capture and storage for irrigation 

purposes.  The model was first calibrated using the last five complete years of the 

observed streamflow record at the gage.  Only the last five years were used in this 

procedure so that the calibrated model would represent the contemporaneous land use of 

the basin to the extent possible.  Model simulations are compared to observed runoff in 

Figure 2.  The Nash-Sutcliffe Efficiency statistic, R2 (ASCE, 1993) is a measure of the 

variance of model errors compared to the variance of the observed data.  The R2 value is 

given by 1 minus the ratio of the model error to the variance of the data and thus can vary 

from -∞ to 1.    The computed R2 for the simulations shown in Figure 1 was 0.39, which 

compares favorably with values cited by Limaye, et al. (2001) for similar studies that 

employed the SWAT model.  The calibrated model was then used to simulate the runoff 

from the basin for the entire 62 years of climate data available at the NWS climate 

station.  The model produced daily runoff simulations for this period. 



2.2 Crop Response Simulations 

Although the daily water requirement of a plant depends on various factors including 

location, plant type, soil conditions, and weather conditions, the impact of water shortage 

at some critical stages of plant growth on crop yields can be particularly serious.  For 

example, the impact of drought on corn during the tasseling period would be much more 

serious than at any other period of plant growth (Bryant et al. 1992).  Thus, both timing 

as well as the rainfall and irrigation amounts have important bearing on crop yields.  

Therefore, the relationship between crop yields and the amount and timing of water 

received must be established before any optimal irrigation decision can be made.  The 

empirical estimation of such relationships requires actual experimental data, which are 

rarely available.  In the absence of real world data, various biophysical models have been 

used in the past to simulate different climatic conditions and water management practices 

and associated crop yield data. 

The Erosion Productivity Impact Calculator (EPIC) model was initially developed to 

measure the cost of soil erosion or the benefits of soil erosion research.  This model is 

capable of simulating the complex biophysical processes of plant growth using readily 

available data.  It consists of nine components - weather, hydrology, erosion, nutrient 

cycling, soil temperature, tillage, crop growth, crop and soil management, and 

economics.    In this study, EPIC was employed to determine crop response to pre-set 

amounts of applied water (whether from either rainfall or irrigation) in order to develop 

crop response functions to be used in the optimization analysis.  Therefore, the weather 

generator of the model was not activated.  In particular, daily rainfall, minimum and 

maximum temperature, and wind data were used to simulate the crop yield.         



Bryant et al. (1992) used the EPIC model to simulate yield response of corn to soil 

water in the southern Texas High Plains.  They used actual experimental data to validate 

the simulation results and found that simulated yield explained up to 86 percent of the 

variation in actual yields.  Based on the soil moisture mapping results, the study area was 

divided into various homogeneous soil moisture units and for each unit; separate crop 

yield levels were simulated.  The EPIC model was used to simulate crop yield levels 

associated with each soil type under various water management decision rules.  

The soil moisture available to the plants at various growth stages can be defined as 

the amount of moisture transferred from the last to the current period plus the amount 

added externally (rainfall and irrigation) at the current decision period.  The relationship 

between the level of soil moisture and final crop yield, within a relevant domain, is 

expected to be positive.  This relationship between the level of soil moisture available to 

the plants at various growth stages and crop yield can be specified to be nonlinear and 

estimated using data on rainfall, supplemental irrigation, and associated crop yield levels. 

EPIC was used to simulate the crop yield under different scenarios of water applied to 

the root zone.  Four irrigation strategies were used to simulate crop yield in a 

representative soil in Henry County during an eight-week irrigation period running from 

week 24 through week 31 of the year. The EPIC model was calibrated so that it could 

reflect the county average yield for the conditions of irrigation and rainfall prevalent in 

the county.  The calibrated EPIC model was then used to simulate corn, cotton, and 

peanut yields for four representative irrigation strategies for the southeastern US    With 

the possible irrigation application of 0, 0.5, 0.75, 1 acre- inch in each of the eight-week 

window, 65536 (48), Monte Carlo simulations were designed for each crop.  Each 



simulation was run for the entire 62 years of observed rainfall data at the Blakely, AL 

station.  However, during each run, the rainfall was randomly generated from a gamma 

distribution fitted to the Blakely data in order to account for the uncertainty in the 

climate.  The appropriateness of the distribution function was tested using the 

Kalmanorov test and was found to be significant.  

 Crop yield and soil moisture at each week during the critical crop growing period 

were recorded from the EPIC simulations in order to derive regression equations between 

crop yield and soil moisture.  Soil moisture and irrigation amounts at each week were 

also recorded to develop the soil moisture transformation equation.  Soil moisture at the 

plow layer (30 cm) was employed for this purpose.   

The crop response functions were of the following form: 

)(M*    Y ijij 0i ii tεαα ++= ∑ >                                                                              (1)                     

where 

Yi is the crop yield from crop I, the crop index (1 corn, 2 cotton and 3 for peanut) 

Mij is soil moisture on crop i at end of week j, αij are the crop and week specific  

coefficients derived from regression of EPIC simulated yield and soil moisture data, and 

ε(t) is the error term in the simulations.  The upper bound on the production function is 

determined by the soil moisture holding capacity which cannot exceed  the field capacity.  

The error term (ε(ti)) represents the residuals between the regression modeled yields and 

the EPIC simulations for each crop (i).  The (ε(ti)) distribution was normal with zero 

mean and standard deviations of 0.06 (corn), 0.015 (cotton) and 0.016 (peanuts).   

 

 



2.3 Non-Linear Optimization Model 

An optimization model was written in optimization environment LINGO (Lingo, 

2003) for this demonstration.  The model estimates weekly irrigation water allotments for 

each crop with the objective of maximizing the total returns based on the crop yields 

derived from the carryover moisture, and irrigation water applied in each week.  The 

mass balance of storage water in the pond is kept in the optimization, thus allowing 

maximum freedom in allotting water in critical weeks on crops.  The model consists of 

three components: storage computations for the pond, soil moisture carryover function, 

and the yield and return estimator.  The optimization model was run for several hundred 

thousand iterations to examine the effects of changes in storage pond sizes, acreage 

planted, and initial soil moisture conditions on the yields and total returns. 

2.3.1 Storage Computations for Irrigation Water 

For this demonstration, the pond surface area was allowed to vary, but the depth was 

kept fixed at 10 ft.  Any runoff in excess of the amount needed to fill the pond during a 

given week was considered to be spilled from the pond and not available for storage.  

However, it was assumed that not all runoff from the stream would be available for 

capture at any individual farm site.  For the demonstration discussed here, it was assumed 

that 5% of the total runoff would be available. This is equivalent to the assumption that 

an individual landowner would have access to 5%  (18 km2) of the total watershed area.   

A weekly mass balance was kept in the irrigation pond for each alternative as follows: 

St = St-1 + Pt + Qt – Et – It                                                                                            (2) 

Where: St = storage remaining at end of week t 

St-1 = storage remaining at end of week t-1, or beginning of week t 



Pt = precipitation falling directly on the pond during week t 

Qt = runoff into the pond during week t 

Et = evaporation from the pond during week t 

It = irrigation withdrawals from the pond during week t 

The units of all quantities are m2-mm.  . The minimum streamflow requirements were 

subtracted from the runoff values before inclusion as pond inflow.  Pond evaporation was 

also computed using the SWAT model.  The storage operation was executed on a daily 

basis using daily precipitation, SWAT-generated runoff and estimated evaporation.  All 

results were then aggregated on a weekly basis for the storage routing operation.   The 

pond was considered to be full at the beginning of each irrigation cycle        

 2.3.2 Weekly soil moisture carryover 

Soil moisture in week j is a function of the amount of moisture present in the soil at 

time period j-1, the irrigation applied during that week and the rainfall that occurred in 

that week.  Because the amount of rainfall for any week during the simulation period is 

unknown at the beginning of the decision period, it was treated as a random variable in 

the Monte Carlo simulations as previously described.  Furthermore, the climate and soil 

conditions cause soil moisture to transform differently for different weeks of the 

irrigation period thus necessitating the need to tabulate the data on a weekly basis.   

Soil moisture carry-over term for each crop used in equation 1 is given by: 

jj1-ij0ij W*  M*    M iiji βχγ ++=  +>(t)                                                                                  (3) 

Where 

Mij is soil moisture from crop i at the end of week j 

Wj is water applied during the week j 



γi0 are crop specific intercepts of the weekly moisture regression line. 

χ ij and βij crop specific and week specific coefficients derived from the simulation data. 

>(t) is the error term derived in the same manner as in the crop model with average 

weekly standard deviations of 0.000683 (corn), 0.000841 (cotton), and 0.000763 

(peanuts). 

It can be noticed that the precipitation term does not explicitly occur in the above 

equation.   However, rainfall uncertainty is incorporated in the random error component 

in the soil moisture function since it was derived from the Monte Carlo simulations using 

the EPIC results.  

All three crop yields were fitted with the soil moisture function to find the effect of 

soil moisture applied in a given week on the crop yield.  The coefficients of the 

regression were found to be significant at the five percent level for all three crops.   

    

2.3.3 Maximizing crop returns based on optimal crop yields  

The objective function is to maximize the total return, defined by the total revenue 

(price of crop multiplied by the total yield) minus the costs associated with irrigation 

(variable costs) and other expenses related to operation of the farm (fixed costs).   

R = ∑ Pi * yi * Yi - ∑ C* Wi*Yi-fixed costs                                                 (4) 

Where R is the total return, Pi is price of crop i, C is cost of irrigation water per acre-inch, 

Wi is total irrigation water of crop i per acre, Yi is acreage and yi is per-acre yield of crop 

i.  Crop prices derived from the October 15, 2003 edition of the National Agricultural 

Census data were employed in the analysis.  These values were $71/ton for corn, 

$1500/ton for cotton, and $625/ton for peanuts.  It is important to note that the value used 



for peanuts was price-supported numbers rather than free market prices.  The costs 

(variable and fixed) for irrigation in this area of Alabama were obtained from a recent 

study performed by the Auburn University Extension Service.  The values used were 

$3.85/acre-inch for the variable cost of irrigation and $72.16/acre for the fixed costs.  

These numbers represent the cost of applying the water to the crops and the amortization 

cost of the facilities respectively.  Necessary unit conversions were performed carefully 

where needed.  Maximum irrigation allowed in each week was limited to 2 inches. The 

other main constraint placed on the objective function was the irrigation water constraint. 

∑ ≤ jiij A  Y*  W                                                                                                          (6) 

where Aj  is available water for irrigation in week j. 

The optimization model computed the most cost effective way of producing 

maximum returns given the constraints.  Based on the yield – moisture relationships for 

all the crops (equation 1), the model optimizes the irrigation amounts given to each crop 

during each of the 8 simulation weeks in such a way that the returns would be highest.  

The resulting yield may not be the highest; however given the nonlinear relationship 

between yields and returns for different crops, the model optimized the yield to obtain 

maximum returns.   The model was run for each of the 62 years for which the data are 

available, and the weekly statistics of each variable are computed.  The model keeps track 

of the variables including weekly irrigation amounts for each crop, weekly water 

availability in the storage pond, crop yields and total returns.  The weekly statistics 

include the average, minimum and maximum and standard deviation.  The weekly 

average statistics for 62 years provide analysis on the average sense, however most of the 

variables exert bi-modality.  Either the pond is full (or nearly full) in anticipation of 



irrigating a critical week for a crop, or is empty (or nearly so).  Therefore in addition to 

the means, it is critical to examine the weekly statistics for the years in which the pond 

would have been nearly empty.  

3. Results 

The purpose of the exercise was to examine how water would be allocated among the 

three crops during periods of shortage.  Water shortages could be generated in two ways, 

i.e., through the use of a small irrigation pond or through the artifice of increasing the 

acreage planted.  Exhaustive combinations of acres planted, pond size, and initial soil 

moisture conditions were employed in the analysis.  For example, Figure 3(a) shows the 

average annual rate of returns per acre (over the 62 years of record) for three pond sizes 

as a function of total acres planted.  The figure effectively demonstrates the relationship 

between available water for irrigation and effectiveness of the irrigation.  For example, a 

pond size of 20 acres (i.e., 200 ac-ft) will maintain the maximum possible rate of returns 

for the three test crops under the prescribed soil and climate conditions of the area for up 

to about 400 acres of planted land.  Similarly, a 400 ac-ft pond would maintain these 

returns for a maximum of about 700 acres, while a small 50 ac-ft pond would not supply 

enough irrigation to maintain the returns against any acreage above the minimum of 100 

acres. 

Of course, the results would not be complete without the inclusion of an alternative 

without any irrigation.  These results are shown in Figure 3(b), which shows average 

annual rates of return versus pond size for 1000 acres planted and for initial soil moisture 

contents of 10% and 30%.  The figure not only demonstrates the significant role played 

by the initial conditions assumptions, but also demonstrates that there is some value in 



even the smallest amount of irrigation for this farm.  For example, a 50 ac-ft irrigation 

pond could result in an average net return increase of $100/acre under both initial 

condition scenarios when compared to the no irrigation alternative. 

This concept is further developed in Figure 4, which shows contours of equal returns 

as a function of both pond size and acres planted for the two initial soil moisture 

conditions.  The contour interval is $30 per acre on both figures.  Landowners can use 

results such as these to determine the acres to be planted for an existing fixed capacity 

irrigation system or to aid in the design of irrigation facilities for a desired number of 

acres to be planted.  One caveat to be mentioned in relation to these results is that the 

total acres planted are assumed to be divided equally among the three crops in all cases.  

For example, if one wished to maintain a rate of return of at least $450 per acre for a total 

of 1000 acres planted under a conservative assumption of 10% initial soil moisture (at the 

beginning of the irrigation cycle), then about 200 ac-ft of storage (20 ft of surface area of 

a storage pond 10 ft deep) would be required on an annual basis.  Interestingly, if one is 

willing to assume 30% initial moisture content, then an average annual rate of return of 

better than $1050 per acre could be realized for 1000 acres planted with 200 ac-ft of 

irrigation storage.    The results offer the producer a range of solutions depending on the 

resources at his disposal (land and money) and the degree of risk that one is willing to 

accept.   

Figures 3 and 4 summarize the average results for the 62-year simulations.  However 

that does not explain the annual variability in historic inflows, and precipitations in the 

light of associated returns.  Figure 5 shows the relationship between returns as a function 

of acres planted, and collocated is the plot of fractional time the pond was nearly empty 



in the eight-week simulation period.  Nearly empty pond at the beginning of any week is 

defined by water availability in the pond below 10% of the storage capacity.  Figure 5 

shows the results for a fixed pond size of 200 ac-ft and initial conditions of 10%.  As 

expected, the returns are maintained as long as the water supply is not taxed and then 

begin a steep decline as the water shortage becomes increasingly severe.  It should be 

noted that these results are influenced by economic factors beyond merely the availability 

of irrigation water.  For example, one can see from the figure that the returns start to 

decline slightly even before the water shortage begins and continue to decline sharply 

after the water shortage has reached its maximum of 15% of the weeks dry.  The figure 

clearly demonstrates the significant impact the water shortage has on the rate of returns. 

It is also critical to examine the weekly distribution of water among the three 

competing crops and to determine the impact of this selection on the yield of each crop.  

These results are demonstrated in Figures 6 and 7 respectively.  Again, these results are 

for a fixed 200 ac-ft pond size and for initial soil moisture conditions of 10%.  As before, 

the water shortage is being generated by the increase in acres to be irrigated.  Figure 6 

effectively demonstrates how the optimization process selects the amount of water to 

place on each crop as the shortage grows.  Basically, for cases of no shortage (i.e., 100 

acres planted), each crop gets as much water as it needs.  Then, as the shortage begins 

(i.e., 1000 acres planted), the irrigation is maintained on the more high value crops 

(peanuts and cotton) while the corn irrigation is decreased.   Figure 7 can be used to 

evaluate the effects on the yield of these irrigation decisions.  One can see from 

comparing the two figures that as the irrigation applied to the corn is decreased, its yield 

takes an immediate sharp drop.  Thus, the relatively low value of the corn offsets its 



relative sensitivity to water supply.  The process continues as the water shortage is 

increased to 2500 acres to be irrigated with the fixed supply.  One can see from Figure 6 

that the algorithm seeks to maintain irrigation on the peanuts and thus greatly reduces the 

amount of water placed on the cotton even though cotton is the higher value crop.  The 

reason for this decision can be seen from Figure 7, i.e., cotton is obviously less sensitive 

to irrigation than are peanuts.  Thus, the maximum total returns can be obtained by 

maintaining the yield of peanuts as much as possible because the cotton yield will not be 

as affected by decreasing the irrigation. 

4. Summary and Conclusions 

Water allocation in competing uses is an increasingly important issue in the Southeast 

USA.  A decision tool was developed to maximize total economic returns from a typical 

farm by allowing optimal allotments of weekly irrigation water from a storage pond.  The 

resulting optimization of yields would allow a farm operator to concentrate on 

optimization of irrigation water application in a few critical weeks for a given crop, 

instead of the entire growing season.  Assessment of crop yields (and resulting net farm 

returns) was accomplished by conducting exhaustive combinations of storage pond 

surface area, acres planted (and irrigated), and initial soil moisture conditions.  The 

algorithms appeared to generate reasonable results in light of the water sensitivity and 

economic value of the crops simulated. The methodology developed can be useful for 

other applications such as nutrient application, and can serve as a decision support tool to 

farm operators. 
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Table 1.  Agricultural Census Data for Henry County, AL 
Number of Farms 325 

Total Number of Farm Acres 103808 

Total Irrigated Land Acres 2958 
Corn Acreages 9621 

Wheat Acreages 2327 
Cotton Acreages 6474 

Soybeans Acreages 313 
Peanuts Acreages 42857 

Hay Acreages 3838 
 



 
Figure 1.  Location of Abbie Creek in Henry County. 
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Figure 2.  SWAT Simulations Comparisons for Abbie Creek: 1986-92 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 3.  Total farm returns as a function of pond size and crop acreages. 



 

Figure 4.  Contours of total returns as a function of pond size, total acreages and initial 
soil moisture conditions. 



 

 
Figure 5.  Assessment of total returns in relation with acres planted and corresponding % 
weeks the pond was nearly empty during the 62-year simulation period.  



Figure 6.  62-year average weekly irrigation amounts for different acreages from a fixed 
200 ac-ft pond size. 



 

 
Figure 7.  Yields from three crops as a function of total crop acreages. 
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